翻訳と辞書
Words near each other
・ Club Saint-Germain
・ Club San Albano
・ Club San Andrés
・ Club San Cirano
・ Club San Fernando
・ Club San Ignacio
・ Club San Luis
・ Club San Martín de Corrientes
・ Club San Patricio
・ Club San Sebastián de León
・ Club sandwich
・ Club Sandwich (film)
・ Club Sandwich at the Peveril Hotel
・ Club seating
・ Club Sesso
Club set
・ Club Seven
・ Club Seven (Australian TV series)
・ Club Siero
・ Club Silvio Pettirossi
・ Club skifield
・ Club Skirts Dinah Shore Weekend
・ Club Smith
・ Club Social y Deportivo Flandria
・ Club Social y Deportivo Jalisco
・ Club Social y Deportivo Juventus
・ Club Social y Deportivo La Emilia
・ Club Social y Deportivo La Florida
・ Club Social y Deportivo Liniers
・ Club Social y Deportivo Macará


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Club set : ウィキペディア英語版
Club set
In mathematics, particularly in mathematical logic and set theory, a club set is a subset of a limit ordinal which is closed under the order topology, and is unbounded (see below) relative to the limit ordinal. The name ''club'' is a contraction of "closed and unbounded".
== Formal definition ==
Formally, if \kappa is a limit ordinal, then a set C\subseteq\kappa is ''closed'' in \kappa if and only if for every \alpha<\kappa, if \sup(C\cap \alpha)=\alpha\ne0, then \alpha\in C. Thus, if the limit of some sequence from C is less than \kappa, then the limit is also in C.
If \kappa is a limit ordinal and C\subseteq\kappa then C is unbounded in \kappa if for any \alpha<\kappa, there is some \beta\in C such that \alpha<\beta.
If a set is both closed and unbounded, then it is a club set. Closed proper classes are also of interest (every proper class of ordinals is unbounded in the class of all ordinals).
For example, the set of all countable limit ordinals is a club set with respect to the first uncountable ordinal; but it is not a club set with respect to any higher limit ordinal, since it is neither closed nor unbounded.
The set of all limit ordinals \alpha<\kappa is closed unbounded in \kappa (\kappa regular). In fact a club set is nothing else but the range of a normal function (i.e. increasing and continuous).
More generally, if X is a nonempty set and \lambda is a cardinal, then C\subseteq()^\lambda is ''club'' if every union of a subset of C is in C and every subset of X of cardinality less than \lambda is contained in some element of C (see stationary set).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Club set」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.